Journal of Organometallic Chemistry 694 (2009) 2368-2374

Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

A novel mode of access to polyfunctional organotin compounds and their reactivity in Stille cross-coupling reaction

Sandrine Lamandé-Langle^a, Mohamed Abarbri^b, Jérôme Thibonnet^{b,*}, Alain Duchêne^{b,*}

^a Université de Nancy, Groupe SUCRES, UMR CNRS 7565, Faculté des Sciences, BP 239, Vandoeuvre Lès Nancy Cedex F-54506, France ^b Laboratoire de Physicochimie des Matériaux et des Biomolécules, EA 4244, Faculté des Sciences de Tours, Parc de Grandmont, 37200 Tours, France

ARTICLE INFO

Article history: Received 28 January 2009 Received in revised form 18 March 2009 Accepted 18 March 2009 Available online 26 March 2009

Keywords: Organotin compounds Sonication Pd cross-coupling

1. Introduction

The considerable advances in the use of organotin compounds as reagents or intermediates in organic synthesis in recent years have prompted the preparation of many new organotin compounds and the development of new rapid and convenient synthesis procedures [1]. The formation of a carbon-carbon bond by organotin compounds (especially tributylstannyl compounds) and electrophiles is of considerable interest. Palladium-catalysed cross-coupling of organotin compounds with organic electrophiles (Stille reaction) has emerged as one of the main methods for the creation of new carbon-carbon bonds [2]. Organotin compounds have been extensively accessed in organic synthesis and are typically prepared by the reaction of organometallic compound (RMgX, Rli, RZnX, etc.) which will react with organotin halides $(R_n SnCl_{4-n})$ or by reactions of stannylanions with organic halides [3]. Alkynyltin compounds are typically prepared by condensation of 1-alkynes with $R_3SnNR'_2$ or R_3SnOR' and also by trapping of an alkynyl metal with R₃SnX [4]. These methods allow synthesis of mono-, di-, tri- and tetra-functional organotin compounds, but in particular mono-functional tributylorganotin compounds have been synthesised with yields varying according to the nature of the substituent. We were therefore interested to synthesise various mono-, di-, tri- and tetra- functional organotin compounds by sonication in order to improve yields and the methodology and to create new organotin compounds according to our laboratory experience [5]. The increased focus on the use of sonochemical

ABSTRACT

Mono-, di-, tri- and tetra-functional organotin compounds were easily prepared in a sonicated Barbier reaction using ultrasound technology via coupling reaction of organo halides with tin halides (Bu₃SnCl, Bu₂SnCl₂, BuSnCl₃, SnCl₄) mediated by magnesium metal. The di- and tri-functional organotin compounds were tested in a Stille cross-coupling reaction in order to ascertain how many groups were transferred.

© 2009 Elsevier B.V. All rights reserved.

methods in organic synthesis has been demonstrated by the many reports in the literature on sonochemical reactions [6]. However few publications have reported the synthesis of mono-functional tributyltin compounds [7] and none have reported the synthesis of di-, tri- and tetra-functional organotin compounds with this technology.

2. Results and discussion

2.1. Preparation of mono-, di-, tri- and tetra-functional organotin compounds

We first tested a simplified and improved one-step synthesis of organotin compounds by Barbier reaction between stannyl chlorides, magnesium turnings and organic halides using ultrasound, without the presence of dibromoethane or iodine, as previously recommended for the synthesis of only mono-functional organotin compounds [7] (Scheme 1).

A wide range of organotin compounds were subjected to this procedure to produce quite high yields of the corresponding products. A clean multi-substitution (double, triple or quadruple) reaction was also possible with di-, tri- and tetrachlorotin derivatives and yielded polyfunctional organotin products. The results are presented in Table 1.

As can be seen, this methodology was able to accommodate a variety of organic functional halides and the yield was generally nearly quantitative, except in the case of tetra-functional tin compounds (entries 22–23) where experimental conditions needed to be optimized. In the case of aryl or benzyl halides a small amount of the duplicated product was obtained, except for entries 11 and

^{*} Corresponding authors. Tel.: +33 247367359; fax: +33 247367073 (J. Thibonnet). E-mail address: jerome.thibonnet@univ-tours.fr (J. Thibonnet).

⁰⁰²²⁻³²⁸X/\$ - see front matter \odot 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2009.03.030

	Bu _n SnCl _{4-n}	+ Mg +	RBr	→ THF or Et ₂ O	$Bu_nSnR_{4\text{-}n}$			
n = 3 n = 2 n = 1 n = 0	1 eq. 1 eq. 1 eq. 1 eq.	1.3 eq. 3 eq. 4 eq. 5 eq.	1.3 eq. 3 eq. 4 eq. 5 eq.	reaction time: 15 min. to 2 h reaction time: 1 to 2 h reaction time: 1 h reaction time: 2 h	1a-4a 1b-10b 1c-7c 1d-3d			
R = alkyl, allyl, alkenyl, allenyl, aryl or heteroaryl								

Scheme 1.

Table 1	
Preparation of mono-, di-, tri- and tetra-functional tin compound	ls.

13. It should be noted that the quality of the reactants was not critical (solvent or halides), and they did not need careful purification before use, and dibromoethane or iodine were not necessary to start the reaction.

2.2. Specific preparation of 1-alkynyltin compounds

The preparation of 1-alkynyltin compounds with this methodology was not conclusive, and we therefore proceeded first with

Entry	п	R	Product	Yield ^a (%)	Literature yield (%)/(ref)	No.
1	3	Allyl	SnBu ₃	91	Commercial 95/[29]	1a
2	3	Vinyl	SnBu ₃	89	Commercial 85/[3b]	2a
3	3	Isopropenyl	SnBu ₃	90	78/[11]	3a
4	3	Allenyl	SnBu ₃	78	Commercial 99/[12]	4 a
5	2	Methyl	Me ₂ SnBu ₂	68 ^b	64/[3p]	1b
6	2	Vinyl	(ℕ) SnBu₂ 2	85	Commercial 91/[14]	2b
7	2	Isopropenyl	SnBu ₂	89	-	3b
8	2	Isobutenyl	SnBu ₂	45	-	4b
9	2	Allyl	$(\longrightarrow SnBu_2 \\ 2$	79	Commercial 78/[3p]	5b
10	2	Phenyl	Ph ₂ SnBu ₂	83	Commercial 78/[13]	6b ^c
11	2	p-Vinylphenyl	SnBu ₂	94	60/[15]	7b
12	2	Thienyl	S SnBu ₂	58	[16]	8b
13	2	Benzyl	Bn_2SnBu_2	79 ^b	81/[30]	9b
14	2	Propargyl	SnBu₂ 2	77	[18]	10b
15	1	Ethyl	Et_3SnBu_2	88 ^b	Commercial 85/[3p]	1c
16	1	Vinyl	(→)SnBu 3 (→)SnBu	73	[3b]	2c
17	1	lsopropenyl	SnBu 3	77	- (continued on	3c next page)

Table 1 (continued)

Entry	п	R	Product	Yield ^a (%)	Literature yield (%)/(ref)	No.
18	1	Allyl	(SnBu 3	82	90/[20a]	4c
19	1	Phenyl	Ph₃SnBu	63	Commercial [21]	5c ^d
20	1	Benzyl	Bn₃SnBu	87 ^b	[22]	6c ^e
21	1	Propargyl	(SnBu 3	62	-	7c
22	0	Allyl	(Sn _4	57	Commercial 66/[28]	1d
23	0	Vinyl	(≫)_Sn 4	59	Commercial [3b]	2d
24	0	Allenyl	(♥●→)Sn 4	90	61/[23]	3d

^a Estimated by ¹H NMR.

^b Isolated yield.

^c 10% of Ph₂ was observed.

^d 5% of Ph₂ was observed.

^e 6% of Bn₂ was observed.

EtMgBr
$$\xrightarrow{R \longrightarrow H}$$
 R \xrightarrow{MgBr} $\xrightarrow{Bu_{4-n}SnCl_n}$ $\xrightarrow{Bu_{4-n}Sn(-1)}$ $\xrightarrow{Bu_{4-n}Sn(-1)}$ $\xrightarrow{Bu_{4-n}Sn(-1)}$ \xrightarrow{R}_n \xrightarrow{R}_n

Scheme 2.

the sonicated preparation of EtMgBr, then synthesis of the magnesium acetylide by hydrogen-metal exchange and finally condensation of the latter with halogenotins using ultrasound (Scheme 2).

A clean double or triple-substitution reaction was possible and yielded di- or tri-functional tin products, which had never

Table 2	
---------	--

Synthesis of 1-alkynyltin compounds.

Entry	п	R	Product	Yield (%)	No.
1	2	Methoxymethyl	(MeO) 2SnBu ₂	86 ^a 45 ^b	1e
2	2	Trimethylsilyl	$\left(Me_3Si \xrightarrow{} SnBu_2\right)$	92 ^a 52 ^b	2e
3	3	Methoxymethyl	(MeO 3SnBu	82 ^a 47 ^b	1f
4	3	Trimethylsilyl	$\left(Me_3Si \xrightarrow{} SnBu \atop 3 \right)$	87 ^a 55 ^b	2f

^a Estimated by ¹H NMR.

^b Isolated yield.

previously been described (entries 1–4). The results are presented in Table 2.

2.3. Stille cross-coupling reaction with functional organotin compounds

In view of the surprising lack of literature reports on the reactivity of multi-functional organotin compounds, and as we obtained various di-, tri- and tetra-functional organotin compounds [8], we decided to use them in a Stille cross-coupling reaction in the presence of palladium complex catalysis [9], while monitoring the stoichiometry of the reaction in order to ascertain how many groups were transferred. This type of reaction has never previously been carried out to our knowledge. Just one example of allylation of carbonyl compounds demonstrated that a tetraallyltin can transfer several groups [10]. We therefore carried out the Stille cross-coupling reaction with different iodovinylic acids (or esters), first introducing a half or a third equivalent of di- or tri-functional organotin compounds and then adding the necessary quantity so that the reaction was quantitative (followed by ¹H NMR spectroscopy) (Scheme 3). The results are presented in Table 3.

As can been seen, we transferred more than one group, but we could not prove that we had transferred two or three groups because we introduced a slight excess of organotin compounds so that the reaction was complete. As it is known that it is always necessary to use an excess of organotin compounds in a Stille reaction, in the case of the allylstannanes (entry 8) we must introduced a

Scheme 3.

 Table 3

 Reactivity of functional organotin compounds in a Stille cross-coupling reaction.

Entry	n	R	R′	<i>n′</i> , <i>T</i> °C	Product	Rdt (%) ^a	No.
1	2	Vinyl	Et	0.65, 25	CO ₂ Et	81	1g
2	2	Vinyl	Н	0.75, 25	CO ₂ H	86	2g
3	2	Vinyl	SnBu ₃	0.6, 25	CO ₂ H	73 ^b	2g
4	3	Vinyl	SnBu ₃	0.5, 25	CO ₂ H	59 ^b	2g
5	4	Vinyl	Н	0.55, 30	CO ₂ H	40	2g
6	2	Isopropenyl	Н	0.65, 70	CO ₂ Et	74	3g
7	2	p-Vinylphenyl	Et	0.65, 70	CO ₂ Et	89	4g
8*	2	Allyl	Et	1.2, 60	CO ₂ Et	77	5g
9	2	Trimethylsilyl ethynyl	Et	0.65, 25	Me ₃ Si CO ₂ Et	89	6g
10	3	Phenyl	Н	0.55, 60	CO ₂ H	51	7g

^a Isolated yield.

^b Deprotected with HCl 1 M.

* Pd(PPh₃)₄ is used.

considerable excess of organotin compounds as already reported [10].

In conclusion, we have described here a new procedure allowing effective synthesis of various organotin compounds using ultrasound. The main advantages of this procedure are: (a) the quality of the reactants is not critical (solvents and tin halides) and they do not need careful purification before use (see Section 3), (b) the use of an additive is not necessary and (c) fair to good yields are obtained. The catalytic couplings utilizing part of these organotin compounds enabled us to transfer more than one or two groups, but using these di- and tri-functional organotin compounds made it possible to decrease the quantity of tin and thus the reactions were cleaner.

3. Experimental

¹H NMR spectra were recorded on a Bruker AC 200 (200 MHz) using CDCl₃ as solvent. The results, reported using the residual

proton resonance of CDCl₃ ($\delta_{\rm H}$ = 7.25 ppm) as the internal reference, were as follows (in order): chemical shift (d in ppm relative to Me₄Si), multiplicity (s, d, t, m, b for singlet, doublet, triplet, multiplet, broad), coupling constants (J in Hz). ¹³C NMR spectra were recorded at 50.3 MHz on the same instrument using the CDCl₃ solvent peak at $\delta_{\rm C}$ = 77.0 ppm as reference. Mass spectra were obtained on a Hewlett Packard (engine 5989A) in GC-MS (70 eV) mode. The isotopic patterns are given for ¹²⁰Sn (isotopic values 33%) in organotin fragments; this means that the reported values (values in brackets) for organotin fragments were only roughly a third of the correct value, taking into account the 10 isotopes of tin compared to those of the organic fragment. IR spectra were recorded on a Perkin-Elmer 781 Infrared Spectrophotometer or on a Perkin-Elmer Spectrum-One. Standard column chromatography was performed on Merk silica gel (60 Å, 230–400 mesh silica gel) or on neutral alumina. DMF was dried by distillation over calcium hydride prior to use. Tin halides (Bu₃SnCl, Bu₂SnCl₂, BuSnCl₃, SnCl₄) were commercially available and were used without any purification. The compounds are commercially available as **1a**, **2a**, **4a**, **2b**, **5b**, **6b**, **1c**, **5c**, **1d**, **2d**, **1g**, **7g** or fully described as **3a** [11], **4a** [12], **1b** [13], **2b** [14], **4c** [20], **1d** [28], **3d** [23], **2g** [24], **3g** [25].

3.1. Preparation of mono-, di-, tri- and tetra-functional organotin compounds (entries 1–24)

A mixture of 0.49 g (0.02 at-gr) of magnesium turnings and 0.005 mol Bu_nSnCl_{4-n} was placed in a Schlenk tube, then covered with 5 mL of solvent (THF or Et_2O) to which a few drops of pure RX were added. The Schlenk tube was plunged into a commercial ultrasound cleaning bath (Branson B1200 E1, working frequency: 47 kHz, 300 W). When the reaction had started, the rest of the RX diluted in 15 mL of the solvent (C = 1.2 mol/L) was added. When the reaction was complete, the mixture was washed with a saturated solution of sodium chloride and extracted with diethyl ether. The organic layers were dried over magnesium sulfate, the solvents are removed under reduced pressure and the compound obtained was purified by column chromatography *on neutral alumina* (100% petroleum ether) or on silica gel (100% petroleum ether previously neutralised with triethylamine).

3.1.1. Di-n-butyldi-isopropenyltin (3b)

IR: 3040, 1634; ¹H NMR δ ppm (CDCl₃, 200 MHz): 0.94 (t, J = 7.2 Hz, 6H), 1.00–1.62 (m, 12H), 2.02 (dd, J = 1.4 Hz, J = 1.5 Hz, ³ $J_{Sn-H} = 45$ Hz, 6H), 5.17 (dq, J = 2.8 Hz, J = 1.4 Hz, 2H), 5.78 (dq, J = 2.8 Hz, J = 1.5 Hz, 2H); ¹³C NMR δ ppm (CDCl₃, 50 MHz): 9.9 (¹ $J_{Sn-C} = 334-351$ Hz, 2C), 14.1 (2C), 27.6 (² $J_{Sn-C} = 47$ Hz, 2C), 27.8 (³ $J_{Sn-C} = 57$ Hz, 2C), 29.4 (² $J_{Sn-C} = 21$ Hz, 2C), 126.8 (² $J_{Sn-C} = 30$ Hz, 2C), 149.5 (2C); ¹¹⁹Sn NMR δ ppm (CDCl₃, 149 MHz): -74.3; MS (70 eV) *m/z*: organotin fragments 259 (M⁺-C₄H₉, 56), 219 (11), 203 (100), 163 (41); 161 (66), 135 (15), 121 (30); organic fragments 41 (81), 39 (58).

3.1.2. Di-n-butyldi-isobutenyltin (4b)

IR: 3063, 1610; ¹H NMR δ ppm (CDCl₃, 200 MHz): 0.92 (t, J = 7.2 Hz, 6H), 1.29–1.58 (m, 12H), 1.82 (s, 6H), 1.93 (s, 6H), 5.51 (s, 2H); ¹³C NMR δ ppm (CDCl₃, 50 MHz): 11.7 (¹ $J_{Sn-C} = 348-365$ Hz, 2C), 14.1 (2C), 26.3 (2C), 27.7 (³ $J_{Sn-C} = 54$ Hz, 2C), 29.1 (2C), 29.6 (² $J_{Sn-C} = 20$ Hz, 2C), 123.2 (¹ $J_{Sn-C} = 430-450$ Hz, 2C), 152 (2C); ¹¹⁹Sn NMR δ ppm (CDCl₃, 149 MHz): –109.4; MS (70 eV) *m/z*: organotin fragments 287 (M⁺-C₄H₉, 54), 231 (100), 177 (20), 175 (36), 135 (40), 121 (13); organic fragments 67 (16), 55 (11), 53 (10), 41 (68), 39 (25).

3.1.3. Di-n-butyldi-p-vinylphenyltin (7b) [15]

IR: 3080, 3050, 1625, 1590, 1490; ¹H NMR δ ppm (CDCl₃, 200 MHz): 0.92 (t, *J* = 7.2 Hz, 6H), 1.28–1.69 (m, 12H), 5.29 (dd, *J* = 0.9 Hz, *J* = 10.8 Hz, 2H), 5.81 (dd, *J* = 0.9 Hz, *J* = 17.6 Hz, 2H), 6.75 (dd, *J* = 10.8 Hz, 2H), 5.81 (dd, *J* = 0.9 Hz, *J* = 17.6 Hz, 2H), 6.75 (dd, *J* = 10.8 Hz, *J* = 17.6 Hz, 2H), 7.42 (d, *J* = 8.2 Hz, 2H), 7.50 (d, *J* = 8.2 Hz, 2H); ¹³C NMR δ ppm (CDCl₃, 50 MHz): 10.8 (¹*J*_{Sn-C} = 353–369 Hz, 2C), 14.1 (2C), 27.8 (³*J*_{Sn-C} = 60 Hz, 2C), 29.4 (²*J*_{Sn-C} = 21 Hz, 2C), 114.4 (2C), 126.4 (³*J*_{Sn-C} = 45 Hz, 4C), 137.4 (²*J*_{Sn-C} = 33 Hz, 4C), 138.0 (2C), 140.7 (2C); ¹¹⁹Sn NMR δ ppm (CDCl₃, 149 MHz): -64.6; MS (70 eV) *m/z*: organotin fragments 383 (M⁺-C₄H₉, 23), 327 (32), 223 (44), 197 (15), 121 (15); organic fragments 77 (16), 57 (14), 51 (14), 41 (100), 39 (27).

3.1.4. Di-n-butyldithien-2-yltin (8b) [16]

IR: 3075, 1640; ¹H NMR δ ppm (CDCl₃, 200 MHz): 0.99 (t, *J* = 7.2 Hz, 6H), 1.39–1.82 (m, 12H), 7.25–7.45 (m, 4H), 7.73–7.80 (m, 2H); ¹³C NMR δ ppm (CDCl₃, 50 MHz): 13.2 (¹*J*_{Sn-C} = 394–412 Hz, 2C), 14.1 (2C), 27.6 (³*J*_{Sn-C} = 65 Hz, 2C), 29.1 (²*J*_{Sn-C} = 23 Hz, 2C), 128.5 (³*J*_{Sn-C} = 46 ppm, 2C), 131.8 (²*J*_{Sn-C} = 16 Hz, 2C), 134.7 (2C), 136.6 (³*J*_{Sn-C} = 31 Hz, 2C); ¹¹⁹Sn NMR δ ppm (CDCl₃, 149 MHz): -67.6; MS (70 eV) *m/z*: organotin fragments 343 (M⁺-C₄H₉, 26), 287 (23), 203 (35), 121 (10); organic fragments 57 (20), 41 (100), 39 (35).

3.1.5. Dibenzyldi-n-butyltin (9b) [17]

IR: 3020, 1600, 1490; ¹H NMR δ ppm (CDCl₃, 200 MHz): 0.90 (t, J = 7 Hz, 6H), 1.22–1.47 (m, 12H), 2.36 (s, ² $J_{Sn-H} = 57$ Hz, 4H), 6.97–7.08 (m, 6H), 7.20–7.27 (m, 4H); ¹³C NMR δ ppm (CDCl₃, 50 MHz): 10.3 (¹ $J_{Sn-C} = 312-325$ Hz, 2C), 14.2 (2C), 18.9 (¹ $J_{Sn-C} = 236-246$ Hz, 2C), 27.8 (³ $J_{Sn-C} = 55$ Hz, 2C), 29.3 (² $J_{Sn-C} = 20$ Hz, 2C), 123.6 (⁵ $J_{Sn-C} = 13$ Hz, 2C), 127.6 (³ $J_{Sn-C} = 22$ Hz, 4C), 128.9 (⁴ $J_{Sn-C} = 11$ Hz, 4C), 143.4 (² $J_{Sn-C} = 35$ Hz, 2C); ¹¹⁹Sn NMR δ ppm (CDCl₃, 149 MHz): –10.6; MS (70 eV) *m/z*: organotin fragments 416 (M⁺, 2), 325 (M⁺-C₇H₇, 87), 269 (48), 213 (58), 211 (100), 177 (20), 121 (14); organic fragments 91 (89), 65 (25), 39 (11).

3.1.6. Diallenyldi-n-butyltin (10b) [18]

IR: 3100, 1940; ¹H NMR δ ppm (CDCl₃, 200 MHz): 0.94 (t, J = 7 Hz, 6H), 1.17 (t, J = 8.1 Hz, 3H), 1.32–1.66 (m, 8H), 4.27 (d, J = 7.1 Hz, ⁴ $J_{\text{Sn-H}} = 33-47$ Hz, 4H), 5.07 (t, J = 7.1 Hz, ² $J_{\text{Sn-H}} = 29$ Hz, 2H); ¹³C NMR δ ppm (CDCl₃, 50 MHz): 11.9 (¹ $J_{\text{Sn-C}} = 370-387$ Hz, 2C), 14.1 (2C), 27.3 (³ $J_{\text{Sn-C}} = 58$ Hz, 2C), 28.9 (² $J_{\text{Sn-C}} = 24$ Hz, 2C), 64.7 (³ $J_{\text{Sn-C}} = 47$ Hz, 2C), 74.6 (¹ $J_{\text{Sn-C}} = 344-362$ Hz, 2C), 210.9 (2C); ¹¹⁹Sn NMR δ ppm (CDCl₃, 149 MHz): -61.8; MS (70 eV) *m/z*: organotin fragments 273 (M⁺-C₃H₃, 70), 255 (M⁺-C₄H₉, 22), 234 (14), 217 (17), 177 (100), 161 (23), 159 (81), 121 (38); organic fragments 41 (37), 39 (30).

3.1.7. *n*-Butyltriethyltin (1c) [19]

IR: 2955, 2920, 2900, 2862; ¹H NMR δ ppm (CDCl₃, 200 MHz): 0.66-1.05 (m, 12H), 1.17–1.61 (m, 12H); ¹³C NMR δ ppm (CDCl₃, 50 MHz): 0.4 (¹J_{Sn-C} = 305–319 Hz, 3C), 8.1 (¹J_{Sn-C} = 300–314 Hz), 11.4 (3C), 14.5, 27.8 (³J_{Sn-C} = 50 Hz), 29.7 (²J_{Sn-C} = 20 Hz); ¹¹⁹Sn NMR δ ppm (CDCl₃, 149 MHz): 2.1; MS (70 eV) *m/z*: organotin fragments 235 (M⁺–C₄H₉, 49), 207 (14), 183 (17), 179 (100), 151 (54), 149 (66), 121 (36); organic fragments 41 (24), 39 (12).

3.1.8. n-Butyltrivinyltin (2c)

IR: 3042, 1630; ¹H NMR δ ppm (CDCl₃, 200 MHz): 0.91 (t, J = 7.1 Hz, 3H), 1.05–1.63 (m, 6H), 5.76 (dd, J = 20 Hz, J = 3.8 Hz, ³ $J_{\text{Sn-H}} = 81-85$ Hz, 1H), 6.24 (dd, J = 13.8 Hz, J = 3.8 Hz, ³ $J_{\text{Sn-H}} = 17.4–21.5$ Hz, 1H), 6.46 (dd, J = 20 Hz, J = 13.8 Hz, ² $J_{\text{Sn-H}} = 65–70$ Hz, 1H); ^{13C} NMR δ ppm (CDCl₃, 50 MHz): 10.7 (¹ $J_{\text{Sn-C}} = 391–409$ Hz), 14.1, 27.4 (³ $J_{\text{Sn-C}} = 58$ Hz), 29.1 (² $J_{\text{Sn-C}} = 22$ Hz), 135.7 (3C), 137.2 (¹ $J_{\text{Sn-C}} = 445-466$ Hz, 3C); ¹¹⁹Sn NMR δ ppm (CDCl₃, 149 MHz): –123.9; MS (70 eV) *m/z*: organotin fragments 201 (M⁺-C₄H₉, 100), 175 (44), 149 (18), 147 (55), 121 (24); organic fragments 41 (65), 39 (32).

3.1.9. n-Butyltri-isopropenyltin (3c)

IR: 3038, 1633; ¹H NMR δ ppm (CDCl₃, 200 MHz): 0.94 (t, *J* = 7.1 Hz, 3H), 1.07–1.15 (m, 2H), 1.25–1.47 (m, 2H), 1.53–1.73 (m, 2H), 2.04 (t, *J* = 1.5 Hz, ³*J*_{Sn-H} = 47 Hz, 9H), 5.22 (dq, *J* = 2.8 Hz, *J* = 1.5 Hz, ³*J*_{Sn-H} = 69 Hz, 3H), 5.82 (dq, *J* = 2.8 Hz, *J* = 1.5 Hz, ³*J*_{Sn-H} = 69 Hz, 3H), 5.82 (dq, *J* = 2.8 Hz, *J* = 1.5 Hz, ³*J*_{Sn-E} = 155 Hz, 3H); ¹³C NMR δ ppm (CDCl₃, 50 MHz): 10.3 (¹*J*_{Sn-C} = 353–369 Hz), 14.1, 27.5 (²*J*_{Sn-C} = 49 Hz, 3C), 27.8, 29.3 (²*J*_{Sn-C} = 21 Hz), 127.7 (²*J*_{Sn-C} = 32 Hz, 3C), 148.6 (¹*J*_{Sn-C} = 416–435 Hz, 3C); ¹¹⁹Sn NMR δ ppm (CDCl₃, 149 MHz): –110.4; MS (70 eV) *m/z*: organotin fragments 243 (M⁺-C₄H₉, 60), 203 (48), 163 (19), 161 (50), 135 (17), 121 (27); organic fragments 41 (95), 39 (100).

3.1.10. n-Butyltriphenyltin (5c) [21]

IR: 3082, 1491; ¹H NMR δ ppm (CDCl₃, 200 MHz): 0.91 (t, *J* = 7.2 Hz, 3H), 1.30–1.79 (m, 6H), 7.37–7.44 (m, 9H), 7.55–7.60 (m, 6H); ¹³C NMR δ ppm (CDCl₃, 50 MHz): 11.3 (¹*J*_{Sn-C} = 381–399 Hz), 14.1, 27.8 (³*J*_{Sn-C} = 64 Hz), 29.2 (²*J*_{Sn-C} =

22 Hz), 128.9 (${}^{3}J_{Sn-C}$ = 47 Hz, 6C), 129.2 (${}^{4}J_{Sn-C}$ = 11 Hz, 3C), 137.5 (${}^{2}J_{Sn-C}$ = 35 Hz, 3C), 139.6 (${}^{1}J_{Sn-C}$ = 460–482 Hz, 3C); ¹¹⁹Sn NMR δ ppm (CDCl₃, 149 MHz): –97.1; MS (70 eV) *m/z*: organotin fragments 351 (M⁺-C₄H₉, 55), 197 (52), 120 (47); organic fragments 77 (38), 57 (21), 51 (72), 41 (100), 39 (36).

3.1.11. Tribenzyl-n-butyltin (6c) [22]

IR: 3078, 3020, 1600, 1495; ¹H NMR δ ppm (CDCl₃, 200 MHz): 0.84 (t, *J* = 7.1 Hz, 3H), 1.13–1.38 (m, 6H), 2.31 (s, ²*J*_{Sn-H} = 58 Hz, 6H), 6.88–7.05 (m, 9H), 7.22 (td, *J* = 7.6 Hz, *J* = 1.5 Hz, 6H); ¹³C NMR δ ppm (CDCl₃, 50 MHz): 10.7 (¹*J*_{Sn-C} = 329–340 Hz), 14.1, 19.2 (¹*J*_{Sn-C} = 241–253 Hz, 3C), 27.7 (³*J*_{Sn-C} = 57 Hz), 29 (²*J*_{Sn-C} = 20 Hz), 123.9 (⁵*J*_{Sn-C} = 13 Hz, 3C), 127.8 (⁴*J*_{Sn-C} = 23 Hz, 6C), 129 (³*J*_{Sn-C} = 11 Hz, 6C), 142. 7 (²*J*_{Sn-C} = 35 Hz, 3C); ¹¹⁹Sn NMR δ ppm (CDCl₃, 149 MHz): –21.2; MS (70 eV) *m/z*: organotin fragments 359 (M⁺–Bn, 6), 211 (54), 121 (6), 120 (13); organic fragments 91 (100), 65 (31), 39 (16).

3.1.12. Triallenyl-n-butyltin (7c)

IR: 3092; ¹H NMR δ ppm (CDCl₃, 200 MHz): 0.95 (t, *J* = 7.1 Hz, 3H), 1.30–1.71 (m, 6H), 4.36 (d, *J* = 7.1 Hz, ${}^{4}J_{Sn-H}$ = 44–46 Hz, 6H), 5.12 (t, *J* = 7.1 Hz, ${}^{2}J_{Sn-H}$ = 32 Hz, 3H); ¹³C NMR δ ppm (CDCl₃, 50 MHz): 11.9 (${}^{1}J_{Sn-C}$ = 373–388 Hz), 14.1, 27.1 (${}^{3}J_{Sn-C}$ = 61 Hz), 28.5 (${}^{2}J_{Sn-C}$ = 27 Hz), 66 (${}^{3}J_{Sn-C}$ = 54 Hz, 3C), 74.6 (${}^{1}J_{Sn-C}$ = 413–433 Hz, 3C), 211.7 (3C); MS (70 eV) *m/z*: organotin fragments 255 (M⁺-C₃H₃, 19), 159 (100), 121 (17); organic fragments 41 (57), 39 (100), 38 (22).

3.2. Preparation of 1-alkynyltin compounds (entries 1-4, Table 2)

A mixture of 2.18 g (0.02 mol) bromoethane, 0.49 g (0.02 at-gr) of magnesium turnings in 17 mL of anhydrous diethyl ether was placed in a dry round-bottomed three-necked flask (100 mL) equipped with a condenser and a dropping funnel flushed with argon. The round-bottomed flask were plunged into a commercial ultrasound cleaning bath (Branson B1200 E1, working frequency: 47 kHz, 300 W). When the magnesium had disappeared, 0.04 mol 1-alkynes diluted in anhydrous diethyl ether were added dropwise. When the reaction had finished, approximately 10 mL anhydrous THF was poured in and when the solution was quite homogeneous, 14 mmol Bu₃SnCl (or 7 mmol Bu₂SnCl₂) diluted in an equivalent volume of THF was added dropwise. When the reaction was complete, the mixture was washed with a saturated solution of sodium chloride and extracted with diethyl ether. The organic layers were dried over magnesium sulfate, solvents were removed under reduced pressure and the compound obtained was purified by column chromatography on neutral alumina (100% petroleum ether) or on silica gel (100% petroleum ether, previously neutralised with triethylamine).

3.2.1. Di-n-butyl-bis(3-methoxypropynyl)tin (1e)

IR: 2165; ¹H NMR δ ppm (CDCl₃, 200 MHz): 0.95 (t, *J* = 7.2 Hz, 6H), 1.19–1.72 (m, 12H), 3.42 (s, 6H), 4.15 (s, ⁴*J*_{Sn-H} = 9.3 Hz); ¹³C NMR δ ppm (CDCl₃, 50 MHz): 13.6 (¹*J*_{Sn-C} = 464–485 Hz, 2C), 13.9 (2C), 26.8 (³*J*_{Sn-C} = 70 Hz, 2C), 28.6 (²*J*_{Sn-C} = 28 Hz, 2C), 58 (2C), 60.8 (2C), 87.1 (¹*J*_{Sn-C} = 475–497 Hz, 2C), 106.5 (²*J*_{Sn-C} = 95 Hz, 2C); ¹¹⁹Sn NMR δ ppm (CDCl₃, 149 MHz): -146.2; MS (70 eV) *m/z*: organotin fragments 315 (M⁺-C₄H₉, 18), 189 (13), 159 (22), 151 (37), 121 (8); organic fragments 69 (13), 57 (29), 45 (12), 41 (100), 39 (45).

3.2.2. Di-n-butyl-bis(trimethylsilylethynyl)tin (2e)

IR: 2152; ¹H NMR δ ppm (CDCl₃, 200 MHz): 0.21 (s, 18H), 0.95 (t, *J* = 7.2 Hz, 6H), 1.17–1.72 (m, 12H); ¹³C NMR δ ppm (CDCl₃, 50 MHz): 0.4 (6C), 13.9 (¹*J*_{Sn-C} = 457–478 Hz, 2C), 14.0 (2C), 26.8 (³*J*_{Sn-C} = 67 Hz, 2C), 28.6 (²*J*_{Sn-C} = 27 Hz, 2C), 109.6 (¹*J*_{Sn-C} = 442–

461 Hz, 2C), 119.7 (${}^{2}J_{Sn-C}$ = 67 Hz, 2C); ¹¹⁹Sn NMR δ ppm (CDCl₃, 149 MHz): -158.9; MS (70 eV) *m/z*: organotin fragments 371 (M⁺-C₄H₉, 44), 315 (10), 217 (39), 121 (10); organic fragments 97 (65), 83 (28), 73 (70), 57 (40), 45 (14), 43 (12), 41 (100), 39 (14).

3.2.3. Tri-n-butyltrimethylsilylethynyltin (1f)

IR: 2158; ¹H NMR δ ppm (CDCl₃, 200 MHz): 0.20 (s, 9H), 0.94 (t, J = 7.0 Hz, 9H), 1.31–1.65 (m, 18H); ¹³C NMR δ ppm (CDCl₃, 50 MHz): 0.6 (3C), 11.5 (¹J_{Sn-C} = 363–380 Hz, 3C), 14.1 (3C), 27.3 (³J_{Sn-C} = 58 Hz, 3C), 29.2 (¹J_{Sn-C} = 22 Hz, 3C), 113.4 (¹J_{Sn-C} = 282–294 Hz), 119.1 (²J_{Sn-C} = 38 Hz); ¹¹⁹Sn NMR δ ppm (CDCl₃, 149 MHz): -66.6; MS (70 eV) *m/z*: organotin fragments 331 (M⁺-C₄H₉, 48), 275 (34), 219 (30), 217 (49), 203 (11), 121 (10); organic fragments 97 (58), 73 (22), 57 (35), 41 (100), 39 (19).

3.2.4. Tri-n-butyl-3-methoxypropynyltin (2f)

IR: 2160, 1105; ¹H NMR δ ppm (CDCl₃, 200 MHz): 0.93 (t, J = 7.1 Hz, 9H), 1.27–1.65 (m, 18H), 3.42 (s, 3H), 4.14 (s, ⁴ $J_{Sn-H} = 8.5$ Hz, 2H); ¹³C NMR δ ppm (CDCl₃, 50 MHz): 11.4 (¹ $J_{Sn-C} = 366-383$ Hz, 3C), 14.1 (3C), 27.4 (³ $J_{Sn-C} = 60$ Hz, 3C), 29.3 (² $J_{Sn-C} = 23$ Hz, 3C), 57.6, 61.0, 90.3 (¹ $J_{Sn-C} = 305-319$ Hz), 106.0 (² $J_{Sn-C} = 55$ Hz); ¹¹⁹Sn NMR δ ppm (CDCl₃, 149 MHz): -61.2; MS (70 eV) m/z: organotin fragments 303 (M⁺-C₄H₉, 59), 247 (48), 191 (14), 189 (26), 159 (29), 121 (16); organic fragments 57 (20), 41 (100), 39 (35).

3.3. Stille cross-coupling reaction with functional stannanes (entries **1–7g**)

Dichlorobis(triphenylphosphine)palladium II (5 mol%) was added to an anhydrous DMF solution (2 mL) of acid or ester halide (1.5 mmol) in a Schlenk flask under argon, and n' mmol of di- or trifunctional organotin compounds were added after stirring for 15 min. The mixture was stirred for12 h at the recommended temperature. After cooling, the reaction mixture was filtered through a Celite path and then treated with a 1 M solution of potassium fluoride and ethylacetate to eliminate the tributyltin iodide thus formed. The aqueous layer was extracted with diethyl ether. The organic layer was washed with brine to eliminate the DMF and dried over MgSO₄. After evaporation of the solvents, the crude product was purified by column chromatography on silica gel (90/10: petroleum ether/diethyl ether) in the case of ethylic esters, and by an acid–base treatment for the acid and stannic esters, which were deprotected at the same time.

3.3.1. (2E)-Ethyl-3-(p-vinylphenyl)-prop-2-enoate (4g) [25]

IR: 3050, 3088, 1728, 1644, 1608, 1568, 1509; ¹H NMR δ ppm (CDCl₃, 200 MHz): 1.36 (t, *J* = 7.1 Hz, 3H), 4.28 (q, *J* = 7.1 Hz, 2H), 5.33 (dd, *J* = 10.9 Hz, *J* = 0.7 Hz, 1H), 5.82 (dd, *J* = 17.6 Hz, *J* = 0.7 Hz, 1H), 6.44 (d, *J* = 16 Hz, 1H), 6.73 (dd, *J* = 17.6 Hz, *J* = 10.9 Hz, 1H), 7.43 (d, *J* = 8.3 Hz, 2H), 7.51 (d, *J* = 8.3 Hz, 2H), 7.68 (d, *J* = 16 Hz, 1H); ¹³C NMR δ ppm (CDCl₃, 50 MHz): 14.8, 60.9, 115.7, 118.4, 127.1 (2C), 128.7 (2C), 134.3, 136.5, 139.9, 144.5, 167.5; MS (70 eV) *m/z*: 202 (65), 174 (18), 173 (10), 158 (10), 157 (76), 130 (54), 129 (68), 128 (100), 127 (45), 115 (14), 103 (12), 102 (28), 77 (51), 76 (14), 75 (15), 64 (14), 63 (23), 51 (43), 50 (18), 43 (11), 39 (18).

3.3.2. (2E)-Ethyl hexa-2,5-dienoate (5g) [26]

IR: 3062, 3081, 1730, 1660, 1646; ¹H NMR δ ppm (CDCl₃, 200 MHz): 1.29 (t, *J* = 7.1 Hz, 3H), 2.95 (tq, *J* = 6.5 Hz, *J* = 1.5 Hz, 2H), 4.19 (q, *J* = 7.1 Hz, 2H), 5.05–5.16 (m, 2H), 5.76–5.92 (m, 2H), 6.98 (dt, *J* = 15.6 Hz, *J* = 6.5 Hz, 1H); ¹³C NMR δ ppm (CDCl₃, 50 MHz): 14.6, 36.5, 60.6, 117.6, 122.6, 134.3, 146.8, 166.9; MS (70 eV) *m/z*: 140 (M^{*+}, 3), 97 (11), 95 (24), 68 (11), 67 (100), 66 (22), 65 (18), 41 (60), 40 (15), 39 (69).

3.3.3. (2E)-Ethyl-5-trimethylsilyl-pent-2-en-4-ynoate (6g) [27]

IR: 3320, 3071, 3082, 2125, 1729, 1621; ¹H NMR δ ppm (CDCl₃, 200 MHz): 0.23 (s, 9H), 1.31 (t, / = 7.1 Hz, 3H), 4.23 (q, / = 7.1 Hz, 2H), 6.26 (d, J = 16 Hz, 1H), 6.76 (d, J = 16 Hz, 1H); ¹³C NMR δ ppm (CDCl₃, 50 MHz): 0.02 (3C), 14.6, 61.2, 101.7, 105.3, 125.3, 131.6, 166.2.

Acknowledgments

We thank the CNRS and MRT for providing financial support, and the "Service d'analyse chimique du Vivant de Tours" for recording NMR and mass spectra.

References

- [1] (a) For general reviews, see: A.G. Davies, P.J. Smith, in: G. Wilkinson, F.G.A. Stone, E.W. Abel (Eds.), Comprehensive Organometallic Chemistry, Pergamon, Oxford, UK, 1982:
 - (b) M. Pereyre, J.-P. Quintard, A. Rahm, Tin in Organic Synthesis, Butterworths, London, 1987:
 - (c) Y. Yamamoto, Acc. Chem. Res. 20 (1987) 243-249;
 - (d) J.L. Wardell, in: P.G. Harrison (Ed.), Chemistry of Tin, Blackie, Glasgow, Scotland, 1989, p. 315;
 - (e) O. Desponds, M. Schlosser, J. Organomet. Chem. 409 (1991) 93-101.
- [2] (a) G.T. Crisp, W.T. Scott, J.K. Stille, J. Am. Chem. Soc. 106 (1984) 7500–7506; (b) J.K. Stille, Angew. Chem., Int. Ed. 25 (1986) 508-524;
 - (c) T.N. Mitchell, Synthesis (1992) 803-815;

(d) V. Farina, in: E.W. Abel, F.G. Stone, G. Wilkinson (Eds.), Comprehensive Organometallic Chemistry II, vol. 12, Elsevier, Oxford, 1995, pp. 161-241 (Chapter 3.4);

(e) V. Farina, G.P. Roth, in: J.S. Liebeskind (Ed.), Advances in Metal-Organic Chemistry, vol. 5, JAI Press, New York, 1996, pp. 1-53;

- (f) V. Farina, V. Krishnamurthy, W.J. Scott, in: L.A. Paquette (Ed.), Org. React, (g) Vol. 50, John Wiley & Sons, 1997, pp. 1–652 (Chapter 1); (g) V. Farina, V. Krishnamurthy, The Stille Reaction, Wiley, New York, 1999.
- [3] (a) D. Seyferth, J. Org. Chem. 22 (1957) 1599-1602;
 - (b) D. Seyferth, F.G.A. Stone, J. Am. Chem. Soc. 79 (1957) 515-517;
 - (c) S.D. Rosenberg, A.J. Gibbons, H.E. Ramsden, J. Am. Chem. Soc. 79 (1957) 2137-2138
 - (d) S.D. Rosenberg, E. Debreczeni, F.L. Weinberg, J. Am. Chem. Soc. 81 (1959) 972-975:
 - (e) D. Seyferth, M.A. Weiner, J. Org. Chem. 26 (1961) 4797-4800;
 - (f) D. Seyferth, S.B. Andrews, J. Organomet. Chem. 30 (1971) 151-166;
 - (g) C. Eaborn, G. Seconi, J. Chem. Soc., Perkin Trans. II (1976) 925-930;
 - (h) K.R. Wursthorn, H.G. Kuivila, J. Organomet. Chem. 140 (1977) 29-39;
 - (i) B.M. Trost, Y. Tanigawa, J. Am. Chem. Soc. 101 (1979) 4743-4745;
 - (j) B. Iddon, B.-L. Lim, J. Chem. Soc., Perkin Trans. I (1983) 271-277;
 - (k) A.I. Meyers, K.A. Lutomski, D. Loucher, Tetrahedron 44 (1988) 3107-3118; (1) T. Carofiglio, D. Marton, G. Tagliavini, Organometallics 11 (1992) 2961-2963:
 - (m) Y. Yamamoto, N. Asao, Chem. Rev. 93 (1993) 2207-2293;

(n) F. Von Gyldenfeldt, D. Marton, G. Tagliavini, Organometallics 13 (1994) 906-913:

- (o) D. Marton, U. Russo, D. Stivanello, G. Tagliavini, P. Ganis, G.C. Valle, Organometallics 15 (1996) 1645-1650;
- (p) D. Marton, M. Tari, J. Organomet. Chem. 612 (2000) 78-84;
- (q) A. McCluskey, I.W. Muderawan, M. Young, D.J. Young, J. Org. Chem. 66 (2001) 7811-7817.
- [4] (a) A.G. Davies, Organotin Chemistry, VCH Verlags, Weiheim, 1997; (b) P. Jaumier, B. Jousseaume, M. Lahcini, Angew. Chem., Int. Ed. 38 (1999) 402-404.
- [5] (a) F. David-Quillot, S. Lunot, D. Marsacq, A. Duchêne, Tetrahedron Lett. 41 (2000) 4905-4907;
 - (b) S. Langle, F. David-Quillot, A. Balland, M. Abarbri, A. Duchêne, J. Organomet. Chem. 671 (2003) 113-119.

- [6] (a) C. Einhorn, J. Einhorn, J.L. Luche, Synthesis (1989) 787-813;
 - (b) S.V. Ley, C.M.R. Low, Ultrasound in Synthesis, Springer, New York, 1989; (c) Y. Goldberg, R. Strukovich, E. Lukevics, Heterocycles 29 (1989) 597-627
 - (d) T.J. Mason (Ed.), Sonochemistry: The Uses of Ultrasound in Chemistry, The Royal Society of Chemistry, Cambridge, 1990;
 - (e) T. Ando, T. Kimura, in: T.J. Mason (Ed.), Advance in Sonochemistry, vol. 2, JAI Press, London, 1991, pp. 211-251;
 - (f) R. Davidson, in: T.J. Mason (Ed.), Sonochemistry: The uses of Ultrasound in Chemistry, The Royal Society of Chemistry, Cambridge, UK, 1992, p. 50;
 - (g) R. Bowser, R. Davidson, in: G.J. Price (Ed.), Current Trends in Sonochemistry, The Royal Society of Chemistry, Cambridge, UK, 1992, pp. 50-58.87-109;
 - (h) Y. Goldberg, R. Strukovich, E. Lukevics, Synth. Commun. 23 (1993) 1235-1238;
 - (i) J. Pestman, J. Engberts, F. Jong, Recl. Trav. Chim. Pays-Bas 113 (1994) 533-542;
 - (j) J.L. Luche, Synthetic Organic Chemistry, Plenum Press, New York, 1998;
 - (k) R.S. Varma, K.P. Naicker, Tetrahedron Lett. 40 (1999) 6177-6180.
- [7] (a) Y. Naruta, Y. Nishigaichi, K. Maruyama, Chem. Lett. 11 (1986) 1857-1860;
 - (b) Y. Naruta, Y. Nishigaichi, K. Maruyama, Org. Synth. 71 (1993) 118-124;
 - (c) A.S.-Y. Lee, W.-C. Dai, Tetrahedron Lett. 37 (1996) 495-498;
 - (d) A.S.-Y. Lee, W.-C. Dai, Tetrahedron 53 (1997) 859-868;
 - (e) A. Yanagisawa, Sci. Synth. 7 (2003) 533-539;
 - (f) M.E. Wood, Sci. Synth. 5 (2003) 315-352;
 - (g) C. Einhorn, J.L. Luche, J. Organomet. Chem. 322 (1987) 177-183.
- [8] L.-Y. Liu, L. Tang, L. Yu, W.-X. Chang, J. Li, Tetrahedron 61 (2005) 10930-10934.
- [9] J.-M. Campagne, D. Prim, Les complexes du Palladium en Synthèse Organique, CNRS Ed., Paris, 2001.
- [10] R.M. Kamble, V.K. Singh, Tetrahedron Lett. 42 (2001) 7525-7526.
- [11] A. Darwish, J.M. Chong, J. Org. Chem. 72 (2007) 1507-1509.
- [12] H. Tanaka, A.K.M. Abdul Hai, H. Ogawa, S. Torii, Synlett (1993) 835–836.
- [13] I.L. Marr, D. Rosales, J.L. Wardell, J. Organomet. Chem. 349 (1988) 65-74.
- [14] D. Seyferth, Org. Synth. 39 (1959) 10-12.
- [15] H. Schumann, G. Rodewald, U.R. Rodewald, J.L. Lefferts, J.J. Zuckerman, J. Organomet. Chem. 187 (1980) 305-319.
- [16] (a) X. Hu, S. Wang, S. Yan, S. Yu, Bopuxue Zazhi 10 (1) (1993) 17;
- (b) S. Gopinathan, C. Gopinathan, J. Gupta, Indian J. Chem. 12 (1974) 623. [17] (a) W.J. Jones, W.C. Davies, S.T. Bowden, C. Edwards, V.E. Davies, L.H. Thomas, J. Chem. Soc. (1947) 1446-1450;
- (b) R.L. Marshall, Sci. Synth. 5 (2003) 559-571.
- [18] A. Boaretto, D. Marton, G. Tagliavini, A. Gambaro, J. Organomet. Chem. 286 (1985) 9-16.
- [19] J. Heinicke, E. Nietzschmann, A. Tzschach, J. Organomet. Chem. 243 (1983) 1–8.
 [20] (a) A. Cunningham, V. Mokal-Parekh, C. Wilson, S. Woodward, Org. Biomol.
- Chem. (2004) 741-748;
 - (b) G.T. Crisp, Sci. Synth. 5 (2003) 485-497;
- (c) D. Young, Sci. Synth. 5 (2003) 549–557.
 [21] G.M. Allan, R.A. Howie, J.N. Low, J.M.S. Skakle, J.L. wardell, S. Wardell, Polyhedron 25 (2006) 695-701.
- [22] H. İmazaki, J. Fujino, T. Nakatsuji, K. Inohara, R. Katsumura, Jap. Kokai Tokkyo Koho (1989) IP01146884
- [23] A. Mc Cluskey, I.W. Muderavan, M. Young, D.J. Young, Synlett (1998) 909-911.
- [24] M. Abarbri, J.-L. Parrain, J.C. Cintrat, A. Duchêne, Synthesis (1996) 82-86.
- [25] (a) M.J. Farrall, Polym. Bull. 11 (1984) 191-194;
- (b) D.J. Michaelis, M.A. Ischay, T.P. Yoon, J. Am. Chem. Soc. 130 (2008) 6610-6615.
- [26] J. Bach, S.D. Bull, S.G. Davies, R.L. Nicholson, H.J. Sanganee, A.D. Smith, Tetrahedron Lett. 40 (1999) 6677-6680.
- [27] B.M. Trost, J. Papillon, T. Nussbaumer, J. Am. Chem. Soc. 127 (2005) 17921-17937
- [28] K.S. Dunne, S.E. Lee, V. Gouverneur, J. Organomet. Chem. 691 (2006) 5246-5259.
- [29] Z.-Q. Zhao, B. Sun, L.-Z. Peng, Y. Li, Y.-L. Li, Chinese J. Chem. 22 (2004) 1382-1383.